检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:南劲松 孟庆繁[2] 郭伟良[2] 申斯乐[2] 滕利荣[2]
机构地区:[1]吉林省食品药品检验所,吉林长春130033 [2]吉林大学生命科学学院,吉林长春130012
出 处:《分析测试学报》2007年第5期617-620,624,共5页Journal of Instrumental Analysis
摘 要:应用异烟肼片粉末的近红外漫反射光谱数据分别结合偏最小二乘法(PLS)和径向基神经网络(RBFNN)建立定量分析模型,并用所建模型对预测集样品进行了预测,结果表明:应用RBFNN所建立的定量分析模型优于PLS模型,相关系数(r)值由0.99593提高到0.99734,交互验证均方根误差(RMSECV)值由0.00523下降到0.00423,预测均方根误差(RMSEP)值由0.00614下降到0.00501。A quantitative analysis model for the prediction of isoniazid content in the prediction set sample was set up.It was based on the combination of the data obtained from the isoniazid powder by near infrared diffuse reflectance spectrometry and the partial least square(PLS) and radial basis function neural network(RBFNN),respectively.The results showed that the model based on RBFNN was superior to that based on PLS model.The correlation coefficient was improved from 0.995 93 to 0.997 34,the root mean squares error of leave-one-cross-validation(RMSECV) was reduced from 0.005 23 to 0.004 23 and the root mean square error of prediction set(RMSEP) was reduced from 0.006 14 to 0.005 01.The relative deviation of the prediction results of isoniazid using the RBFNN model and the actual values was less than 1.012%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222