检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子学报》2007年第9期1714-1718,共5页Acta Electronica Sinica
基 金:国家自然科学基金项目(No.60672018);863项目(No.2006AA01Z129);厦门大学985二期信息创新平台项目(No.0000-X07204)
摘 要:提出了一种基于角点检测、AdaBoost算法和C-V方法的平面旋转人脸检测及特征定位方法.方法首先根据AdaBoost算法训练样本得到脸、眼、鼻、嘴4个检测器;然后以角点作为眼睛的候选点,枚举任意两个角点构造可能的人脸区域,并在区域内运用人脸检测器进行检测;接着利用眼、鼻、嘴检测器检测出人脸特征所在的矩形区域;最后利用C-V方法从各个特征区域中分割出人脸特征的轮廓,进而得到人脸关键特征点的位置.在CMU平面旋转测试集上的检测率为94.6%,误报24个,提取出的特征点位置准确.实验结果表明方法是有效的.In order to solve the problems of face detection under rotation in image plane and facial features localization, a hierarchical approach was presented. Comer detection,AdaBoost algorithm and C-V method were integrated into the approach.First, four kinds of detectors were trained by AdaBoost algorithm for detecting faces, eyes, noses and mouths. Second, the comers were extracted from image. The comers were regarded as candidate eyes and used to construct candidate face regions as input to the face derector. Third, the eye regions, nose regions and mouth regions were detected using the feature detectors, and the feature contours and feature points were extracted from the feature regions by C-V method. The experiments on CMU rotated face test set result a 94. 6% correct rate with 24 false alarms,and the position of the extracted feature points were accurate.Results show that the proposed approach is efficient.
关 键 词:人脸检测 人脸特征定位 角点检测 水平集方法 C-V方法
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170