检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学计算机学院 [2]西安电子科技大学经济管理学院,西安710071
出 处:《计算机工程》2007年第17期46-48,共3页Computer Engineering
摘 要:当两类中的样本数量差别较大时,支持向量机的分类能力将会下降。该文提出了一种支持向量机新算法——DFP-PSVM,将有约束条件的二次规划问题转换为无约束二次规划问题,并通过优化计算来实现。为了克服传统的蛇形算法不能收敛于边缘凹陷处以及初始化过于敏感的缺点,采用基于可变形模型的梯度矢量流方法,提取了乳腺X光片中的肿瘤区域,分析了3个基于边缘的价矩。将其他肿瘤形状特征作为DFP-PSVM分类算法的特征输入,进行恶性肿瘤和良性肿瘤的计算机辅助诊断。实验表明,在小样本、两类样本数量"严重不均衡"的情况下,该算法有着较强的分类能力。When two-class problem samples are very unbalanced, SVM has a poor performance. A novel SVM algorithm, DFP-SVM is presented to solve the problem implemented by transfering the quadratic program with limited condition into quadratic program without constraining condition. Optimal computation is conducted to achieve exciting results. In order to overcome the problems of traditional snake associated with poor convergence to boundary concavities and sensitive initialization, gradient vector flow based on deformable models is presented to segment tumor region. And three new moments based on boundary are also developed. The novel classifier applies the three moments and other shape features to classify the tumor into the malignant or the benign. Computational results indicate that the modified algorithm has a strong capability of classification for the unbalanced data of small set of samples related to two-class problems.
关 键 词:可变形模型 梯度矢量流 肿瘤 形状特征 支撑向量机
分 类 号:TP273.5[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117