检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]贵州大学理学院
出 处:《智能系统学报》2007年第5期68-77,共10页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金资助项目(60565002)
摘 要:基于生物免疫系统的自适应学习、免疫记忆、抗体多样性及动态平衡维持等功能,提出一种动态多目标免疫优化算法处理动态多目标优化问题.算法设计中,依据自适应ζ邻域及抗体所处位置设计抗体的亲和力,基于Pa-reto控制的概念,利用分层选择确定参与进化的抗体,经由克隆扩张及自适应高斯变异,提高群体的平均亲和力,利用免疫记忆、动态维持和Average linkage聚类方法,设计环境识别规则和记忆池,借助3种不同类型的动态多目标测试问题,通过与出众的动态环境优化算法比较,数值实验表明所提出算法解决复杂动态多目标优化问题具有较大潜力.A dynamic multi-objective immune optimization algorithm suitable for dynamic multi-objective optimization problems is proposed based on the functions of adaptive learning, immune memory, antibody diversity and dynamic balance maintenance, etc. In the design of the algorithm, the scheme of antibody affinity was designed based on the locations of adaptive-neighborhood and antibody; antibodies participating in evolution were selected by Pareto dominance. In order to enhance the average affinity of the population, clonal proliferation and adaptive Gaussian mutation were adopted to evolve excellent antibodies. Furthermore, the average linkage method and several functions of immune memory and dynamic balance maintenance were used to design environmental recognition rules and the memory pool. The proposed algorithm was compared against several popular multi-objective algorithms by means of three different kinds of dynamic multi-objective benchmark problems. Simulations show that the algorithm has great potential in solving dynamic multi-objective optimization problems.
关 键 词:动态多目标优化 时变Pareto面 环境跟踪 自适应ξ邻域 免疫算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222