基于非线性内点法的安全约束最优潮流 (一)理论分析  被引量:38

Security Constrained Optimal Power Flow Based on Nonlinear Interior Point Method Part one Theory Analysis

在线阅读下载全文

作  者:李尹[1] 张伯明[1] 孙宏斌[1] 吴文传[1] 

机构地区:[1]清华大学电机系电力系统国家重点实验室,北京市100084

出  处:《电力系统自动化》2007年第19期7-13,共7页Automation of Electric Power Systems

基  金:国家重点基础研究发展计划(973计划)资助项目(2004CB217904)。~~

摘  要:提出了一种考虑多预想事故的安全约束最优潮流内点算法。分析了多预想事故下安全约束最优潮流模型的构建及控制变量的划分。直接应用一类基于扰动KKT(Karush-Kuhn-Tucker)条件的非线性路径跟踪内点理论来设计这一大规模非线性规划问题的解法。对算法核心——简约KKT系统进行了深入的结构分析,导出一种由4×4块元素构成,按预想事故分块对角排列,类似节点导纳矩阵结构的修正系统稀疏结构。简约系统的维数仅取决于等式潮流方程的个数,每次迭代的计算规模稍大于同时求解基态和c个起作用预想事故牛顿潮流迭代的8倍。Based on a primal dual path following interior point method, a steady state security constrained optimal power flow approach is presented. How to incorporate multi-contingency steady state security constraints into classical optimal power flow model and which variables should be considered as control variables are analyzed. According to the perturbed KKT conditions of the primal problem, a primal dual path following interior point method is directly applied to solve this large-scale nonlinear programming (NLP) problem. Bordered-blocked-diagonal-form of the reduced KKT system is revealed, in which each diagonal block is constructed by 4 × 4 small block elements and has the similar frame of the nodal admittance matrix. The dimension of the reduced KKT system only depends on power flow equations. Complexity analysis suggests that each iteration's computation burden is about 8 times than that of Newton power flow iteration for base case and binding contingencies at the same time.

关 键 词:最优潮流 静态安全 非线性规划 内点法 

分 类 号:TM744[电气工程—电力系统及自动化] TM711

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象