基于自适应模拟退火遗传算法的最优Lambert转移  被引量:14

Optimal Lambert transfer based on adaptive simulated annealing genetic algorithm

在线阅读下载全文

作  者:卢山[1] 陈统[1] 徐世杰[1] 

机构地区:[1]北京航空航天大学宇航学院,北京100083

出  处:《北京航空航天大学学报》2007年第10期1191-1195,共5页Journal of Beijing University of Aeronautics and Astronautics

摘  要:主要研究了航天器采用Lambert二脉冲变轨的优化问题。对于初始位置、目标位置和转移时间都不固定的Lambert二脉冲转移,由于多变量以及方程本身的复杂性,采用传统的优化方法效率低甚至无法求解.采用了自适应遗传算法(AGA),寻求多变量的最优解.同时结合模拟退火算法,得到了自适应模拟退火遗传算法(ASAGA),该算法既具有全局搜索能力,又改善了一般遗传算法的局部寻优能力.通过仿真,比较了遗传算法和自适应模拟退火遗传算法的寻优结果,表明两者寻求最优转移的有效性,以及自适应模拟退火算法具有更强的寻优能力.The optimization of Lambert two-impulse transfer was studied. The traditional optimization methods were inefficient or even ineffective for the Lambert transfer with unfixed initial position, final position and transfer time, because of various variables and the complexity of equations. The adaptive genetic algorithm (AGA) was adopted to find the optimal variables. Meanwhile, the adaptive simulated annealing genetic algo- rithm (ASAGA) was developed by combining AGA and simulated annealing algorithm. The new algorithm not only provided global search capacity, but also improved local search capacity of AGA. The optimization results of AGA and ASAGA were compared. The results validate the effectiveness of two algorithms, and also the stronger search capacity of ASAGA.

关 键 词:轨道转移 优化 遗传算法 模拟退火 

分 类 号:V448.234[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象