检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李梦侠[1] 王东[1] 李增鹏[1] 王佳[1] 关伟[1] 杨镇洲[1] 谢家印[1] 仲召阳[1]
机构地区:[1]第三军医大学大坪医院野战外科研究所肿瘤中心,重庆400042
出 处:《重庆医学》2007年第19期1926-1928,1972,共4页Chongqing medicine
摘 要:目的探讨多肿瘤标志物联合检测系统在肺癌诊断及分类中的意义,并建立判别方程,以提高诊断正确率。方法对601例肺癌患者、88例肺部良性疾病患者及1203例正常体检者的12种常见肿瘤标志物检测结果及临床资料进行回顾性研究,通过Fisher二分类判别分析建立判别诊断及三种主要病理学类型分类方程。结果单项指标中CEA、CA125和CA242阳性率分别为40.93%、29.78%和13.48%,与肺部良性疾病组和正常人群阳性率差异有统计学意义(P<0.。01),其中CEA对肺癌诊断差异有统计学意义(P<0.001)。建立肺癌诊断判别方程及分类诊断方程,其中肺癌诊断符合率为89.10%,同时分类诊断符合率为86.10%(鳞癌),92.10%(腺癌)和95.60%(小细胞肺癌)均显著高于其对应的多项指标累加的诊断正确率及CEA单项诊断正确率(P<0.01)。结论肺癌诊断及分类方程有助于临床对多肿瘤标志物意义的理解,能够有效提高肺癌及分类诊断的正确率,有推广应用价值。Objective To evaluate the significance of multiple tumor markers detection system in diagnosis and classify of lung cancer,and enhance the accuracy rate by establishing the diagnostic equation. Methods Link the tumor markers detection results and the clinical information of 601 cases of lung cancer patients,88 cases of respiratory system benign disease patients and 1203 cases of health examinations by retrospective study. Establish the lung cancer diagnostic equation and classify functions of three major pathological types. Results The positive rates of CEA,CA125 and CA242 were 40. 93%, 29. 78% and 13.48%, separately, which were significant different from their counterpart of lung benign disease group and health group. Moreover,CEA was significance rather than CA125 and CA242 in lung cancer diagnosis. The diagnose accordance rate of lung cancer diagnostic equation was 89.10 %, and the accordance rate of the classify functions were 86.10 % (SC), 92.10 % (AC) and 95.60 % (SCCL) separately, and all had great significance compared with the accuracy rate of CEA and combined diagnosis(P〈0. 01). Conclusion Diagnostic and classify equation of lung cancer established by this study are great helpful to understand the meaning of multiple tumor marker detection result correctly and have significance of enhancing the accuracy rate of lung cancer diagnosis and classify.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3