强噪声下已知信号的模糊神经网络识别  被引量:1

RECOGNITION OF KNOWN SIGNAL IN STRONG NOISE BASED ON FUZZY NEURAL NETWORKS

在线阅读下载全文

作  者:潘涛[1] 李鲠颖[2] 

机构地区:[1]苏州铁道师范学院物理系,苏州215009 [2]华东师范大学分析测试中心,上海200062

出  处:《波谱学杂志》1997年第3期223-228,共6页Chinese Journal of Magnetic Resonance

摘  要:以计算机模拟为基础研究了用模糊神经网络方法对被噪声严重污染的已知信号进行识别的问题,研究表明,将模糊隶属函数和BP神经网络相结合对信噪比极低的信号有较强的识别能力,本文还从实用性角度讨论了这一识别方法的可行性,这为强噪声下的磁共振信号识别问题提供了新途径.In this paper, problems associated to recognition of known signal submerged in noise is studied with computer simulations by Fuzzy Neural Networks. The research results show that, under very low signal-to-noise ratio, a very high recognition rate was still kept by the networkss with combination of fuzzy membership function and BP algorithm. In addition, the practicability of this recognition method was investigated.The approach opens a new way to recognition of signal embeded in strong noise in NMR.

关 键 词:信号识别 模糊神经网络 磁共振 计算机模拟 噪声 

分 类 号:O482.532[理学—固体物理] TP18[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象