检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州铁道师范学院物理系,苏州215009 [2]华东师范大学分析测试中心,上海200062
出 处:《波谱学杂志》1997年第3期223-228,共6页Chinese Journal of Magnetic Resonance
摘 要:以计算机模拟为基础研究了用模糊神经网络方法对被噪声严重污染的已知信号进行识别的问题,研究表明,将模糊隶属函数和BP神经网络相结合对信噪比极低的信号有较强的识别能力,本文还从实用性角度讨论了这一识别方法的可行性,这为强噪声下的磁共振信号识别问题提供了新途径.In this paper, problems associated to recognition of known signal submerged in noise is studied with computer simulations by Fuzzy Neural Networks. The research results show that, under very low signal-to-noise ratio, a very high recognition rate was still kept by the networkss with combination of fuzzy membership function and BP algorithm. In addition, the practicability of this recognition method was investigated.The approach opens a new way to recognition of signal embeded in strong noise in NMR.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40