检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北电力大学能源与机械工程学院,吉林吉林132012
出 处:《吉林大学学报(工学版)》2007年第4期833-837,共5页Journal of Jilin University:Engineering and Technology Edition
基 金:吉林省科技发展计划项目(20040513)
摘 要:针对气液两相流压差波动信号的非平稳特征,提出了以多尺度连续小波变换值矩阵的奇异值为特征矢量的流型识别方法。首先对气液两相流压差波动信号进行连续小波变换,得到初始特征向量矩阵。然后对初始特征向量矩阵进行奇异值分解得到矩阵的奇异值,将其作为流型的特征向量,再结合RBF神经网络形成流型的智能识别方法。对水平管内空气-水两相流4种流型的识别结果表明该方法能够有效地识别流型。In view of the non-stationary feature of the pressure difference fluctuation signal in the gasliquid two-phase flow, a flow pattern identification method was proposed based on the characteristic vector from the singular value of the matrix formed by the multi-dimensional continuous wavelet transform values of the fluctuation signal. The continuous wavelet transform was applied to the pressure difference fluctuation signal in the gas-liquid two-phase flow to form the initial characteristic vector matrix, from which the singular value of the matrix could be obtained through the singular value decomposition. The decomposed singular value may serve as the flow pattern characteristic vector and the input to a radial basis function neural network (RBFNN) to realize an intelligent identification of the flow pattern. The proposed identification method can precisely identify the four flow patterns of the air-water two-phase flow in a horizontal pipe, providing an effective new method for the flow pattern identification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117