基于Laplacian Eigenmap的图像变化检测虚警优化技术  

Optimization of false alarm rate in image change detection based on Laplacian Eigenmap.

在线阅读下载全文

作  者:吴华[1] 常艳玲[2] 沙瑞[1] 

机构地区:[1]北京装甲兵工程学院技术保障工程系,北京100072 [2]中国酒泉卫星发射中心,兰州732750

出  处:《计算机工程与应用》2007年第32期196-200,共5页Computer Engineering and Applications

基  金:国家自然科学基金(No.60673090)。~~

摘  要:对点目标的图像变化检测,现有的变化检测技术结果往往存在着虚警过大的问题。通过深入分析多个传统的变化检测方法的特点,利用各方法的互补性,提出了利用Laplacian Eigenmap对多个方法检测结果进行降维分类的优化技术。首先把各个方法对某个像素的检测结果用向量的形式进行表示,然后利用Laplacian Eigenmap对整个图像的数据流形在低维空间展开,最后利用模糊分类进行分类。该技术有两个优势:(1)在保证现有较高检测率的同时,大大降低了结果的虚警率;(2)它极大地降低了在传统方法中由于人为阈值取舍带来的偏差风险。但该技术的不足之处是增加了计算量。According to the high false alarm rate in the image ehange detection for point targets,an optimization method based on Laplaeian Eigenmap is proposed in this paper.We firstly express all the results of one pixel in the image by many ICD methods as a vector,and then spread the manifold which is formed by such vectors in the high dimensional space into the low dimensional space by Laplacian Eigenmap.At last these data are classified into two classes by the Gustafson Kessel,the changed points and those not.Its advantage lies in two aspects.First,it can reduce the false alarm apparently while keeps the detection rate in a high level.Second,it can also decrease the uncertainty of the result due to the unreliahle decision of the threshold value.However,such optimization increases the computational complexity.

关 键 词:图像变化检测 虚警优化 Laplacian特征映射 降维 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象