检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学航空航天与力学学院
出 处:《同济大学学报(自然科学版)》2007年第10期1368-1372,共5页Journal of Tongji University:Natural Science
基 金:国家自然科学基金资助项目(10626045;10272084)
摘 要:对于由横观各向同性不可压缩的修正Varga材料组成的含有微孔的球体,研究了球体在外表面突加的拉伸恒定载荷作用下的径向运动问题,得到了描述微孔运动的二阶非线性常微分方程.通过对方程的解的定性性质的分析,证明了当方程有唯一平衡点时,它是方程的中心;当方程有三个平衡点时,其中一个是方程的鞍点,另两个是方程的中心.进而证明了在给定的拉伸载荷作用下,球体内部微孔随时间的演化是非线性周期振动.讨论了材料关于径向各向异性的参数对微孔振动的影响,并给出了相应的数值算例.The radial motion of a sphere,which has a pre-existing microvoid at its center, and is composed of the transversely isotropic incompressible modified Varga material was studied when the sphere was subjected to a suddenly applied tensile constant load on its outer-surface. A second-order nonlinear ordinary differential equation that describes the motion of the microvoid is obtained. Analysis of the qualitative properties of the solution of the equation proves that the only existing equilibrium point of the equation is a center, and that when there are three equilibrium points, one is a saddle point and the other two are centers. Furthermore, it can be concluded that, under the prescribed tensile constant load, the motion of the microvoid in the interior of the sphere presents a nonlinear periodic oscillation with the increasing time. The effect of parameter, on the periodic oscillation of the microvoid is also discussed and the corresponding numerical examples are presented.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.141.157