检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东建筑设计研究院,上海200002 [2]同济大学地下建筑与工程系,上海200092
出 处:《中国图象图形学报》2007年第11期2109-2113,共5页Journal of Image and Graphics
摘 要:Delaunay空球准则广泛应用于3维四面体剖分算法,但标准的Delaunay四面体化只适用于点集的凸包区域,且要求不存在多点共球。为了将Delaunay四面体化更广泛地应用于网络剖分,通过引入局部优化三角形面代替Deluany严格的空球准则,提出了3维任意域内点集Deluanay四面体化(DTETAD)的概念,并首先通过若干关键定理的证明,研究了一个四面体划分是DETEAD的充要条件,然后建立了DTETAD的空球准则。该研究成果为拓展Delaunay算法在更广泛范围的应用提供了理论依据。The Delaunay criterion of the empty sphere is widely used for 3 dimensional tetrahedron tessellation. But original Delaunay tetrahedralization can not be used for the points set with constrained boundary and the degenerate points set in which four or more points are coplanar or in which five or more points are cospherical. The concept of Delaunay tetrahedralization in an arbitrary domain (DTETAD) is presented based on the definition of local optimized triangulation which is brought out to substitute the strict empty sphere criterion of Delaunay. The sufficient and necessary condition for a tetrahedralization to be a DTETAD are proved,and the conditional empty sphere criterion of DTETAD is presented. The research establishes the theoretic foundation for the application of Delaunay in an arbitrary domain.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.226.114