检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏大学食品与生物工程学院,江苏212013
出 处:《微计算机信息》2007年第34期229-231,共3页Control & Automation
基 金:国家自然科学基金资助项目(30370813)
摘 要:水果轻微损伤检测对提高水果档次、延长货架期有着重要的经济价值,如果不把轻微损伤水果检测出来加以剔除,随着贮藏时间的延长就很容易霉烂,并影响其他正常水果。提出了在900—1100nm处利用近红外图像处理技术对水果轻微损伤进行检测的方法。采用四周扫描法去除背景,针对无明显双峰图像分割的难点开发出了一种新的分割算法对轻微损伤进行分割,最后对轻微损伤的个数和面积进行了识别计算并对面积的畸变校正进行了探讨。实验结果表明,该方法对有轻微损伤的图像识别正确率达91.3%,为水果的后续在线检测奠定了基础。The detection of slight bruised fruit was important economic worthiness to enhance grade of fruit and prolong shelf life. With the time going they were very easy rot and contaminated other good fruit, if the slight bruised fruit were not eliminated. In this paper using the method of near infrared (NIR) imaging processing to detect slight bruised fruit were presented between 700 and 1100nm. The background was removed from the imaging by around-scanning method. And adopt a new method to segment the slight bruised imaging which was not evidence double apex. At last the number and area of slight bruised was computed in every picture and revising aberrant area of them was discussed. For the image with slight bruised the result of experiment indicate that identify ratio of this method is 91.3%, which is the foundation to subsequent on-line detection of fruit.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP274.52[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.80.205