基于BP神经网络的UASBAF系统运行调控策略  被引量:3

Controlling strategies of UASBAF system based on BP neural network

在线阅读下载全文

作  者:任南琪[1] 章育铭[2] 施悦[3] 

机构地区:[1]哈尔滨工业大学市政环境工程学院,哈尔滨150090 [2]江苏苏源环保工程股份有限公司,南京210008 [3]哈尔滨工程大学动力与能源工程学院,哈尔滨150001

出  处:《哈尔滨工业大学学报》2007年第10期1564-1568,共5页Journal of Harbin Institute of Technology

基  金:国家高技术研究发展计划资助项目(863-2002AA601310);国家自然科学基金重大国际合作项目(50521140075)

摘  要:以两相厌氧工艺中产甲烷相(UASBAF反应器)处理中药废水为原型,采用带动量、自适应学习率的快速BP收敛算法,建立人工神经网络模型,并利用分离相关权值法对关键性调控因子(pH、进水COD、碱度、HRT)对反应器运行效果的影响大小进行排序,发现pH是决定系统运行效果的限制性因子,在高运行负荷阶段其限制性尤为明显;在所建模型的基础上,通过分步固定调控因子的方法实现双因子联合作用三维谱图,直观、定性地分析各调控因子对系统运行效果的影响过程,并得到一系列的运行调控对策来优化反应器的运行条件,突破了传统人工神经网络担任预测工具的角色,为其在反应器的运行调控中优势的进一步发挥提供有效途径.Based on the prototype experiment of UASBAF as the methanogenic phase of two - phase anaerobic treating herb wastewater, adopting a fast convergence backpropagation algorithm with momentum and adaptive learning rate, an artificial neural network ( ANN ) model was established. Besides, comparison was conducted using method of partitioning connection weights to investigate influence of key factors( pH, COD, ALK, HRT) to the performance of the reactor. As a result, pH value is found to be the most important controlling parameter to maintain the system performance especially under high loading conditions. On the ground of model built, by fractionally fixing affecting factors tridimensional figures with two conjoint affecting factors were plotted to analyze ways of input parameters affecting the reactor visually and qualitatively. And ultimately a series of strategies were proposed to optimize the working condition of the system, which broke through the traditional predicting role of ANN and provided an effective way of exploiting advantage of ANN in controlling reactors.

关 键 词:BP神经网络 双因子联合影响谱图 调控策略 UASBAF 中药废水 

分 类 号:X703[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象