检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东财政学院统计与数理学院,山东济南250014
出 处:《山东大学学报(理学版)》2007年第5期9-13,共5页Journal of Shandong University(Natural Science)
摘 要:利用双枝模糊集的概念,提出了双枝模糊集表现定理的对偶形式,即交-表现定理.利用交-表现定理分析了双枝模糊集的运算性质,讨论了双枝模糊集并-表现定理与交-表现定理的关系.通过分析得到:双枝模糊集交-表现定理是单枝模糊集交-表现定理的一般形式,单枝模糊集交-表现定理是双枝模糊集交-表现定理的特例.Based on the concept of the both-branch fuzzy set, the intersection-representation theorem of the both-branch fuzzy set is put forward. Based on intersection-representation theorems, the relationships between the intersection-representation theorem and the union-reprcsentation theorem of the both-branch fuzzy set are analyzed, and its operational property is discussed, The resuits indicate that the intersection-reprcsentation theorem of the both-branch fuzzy set is the general form of the intersection-repre- sentation theorem of the Zadeh fuzzy set, and the intersection-reprcsentation theorem of the Zadeh fuzzy set is the special form of the intersection-representation theorem of the both-branch fuzzy set.
关 键 词:数并积 集合套 双枝模糊集 双枝模糊集交-表现定理
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49