Banach空间的逼近紧性与度量投影算子的连续性及其应用  被引量:1

在线阅读下载全文

作  者:陈述涛[1] Henryk Hudzik Wojciech Kowalewski 王玉文[1] Marek Wislta 

机构地区:[1]哈尔滨师范大学数学与计算机科学学院,曾远荣泛函研究中心,哈尔滨150080 [2]Faculty of Mathematics and Computer Science,Adam Mickiewicz University,Umultowska 87,61-614 Poznán,Poland

出  处:《中国科学(A辑)》2007年第11期1303-1312,共10页Science in China(Series A)

基  金:国家自然科学基金(批准号:10471032;10671049);波兰国家科学研究基金(批准号:1P03A1127)资助项目

摘  要:首先给出赋范线性空间中的非空集合C的逼近紧性的等价描述.如所周知,如果C是Banach空间X中的一个逼近紧的半Chebyshev闭集,那么由X到C的度量投影算子π_c是连续的.当X是中点局部一致凸的Banach空间,利用Banach空间几何的技巧证得:C的逼近紧性对投影算子π_c的连续性也是必要的.利用这个一般结论给出:当T是由逼近紧且严格凸的Banach空间X到中点局部一致凸Banach空间Y的有界线性算子时,T有连续的Morse-Penrose度量广义逆T^+的充分必要条件.

关 键 词:逼近紧性 连续性 度量投影算子 中点局部一致凸 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象