主成分提取在遥感FTIR谱图解析中的应用  被引量:6

Principal Component Extraction Used for the Interpretation of RS-FTIR Spectra

在线阅读下载全文

作  者:胡兰萍[1] 张琳[1] 李燕[1] 张黎明[1] 任翌博[1] 于佰华[1] 王俊德[1] 

机构地区:[1]南京理工大学现代光谱研究室

出  处:《光谱学与光谱分析》2007年第11期2193-2196,共4页Spectroscopy and Spectral Analysis

基  金:国家自然科学基金项目(20175008);中国博士后科学基金项目(2003034386);南通市科技基金项目(K2006007)]资助

摘  要:建立了基于人工神经网络(ANN)的遥感FTIR谱图解析方法。针对人工神经网络(ANN)训练时间过长和模型"过拟合"的问题,采用偏最小二乘法(PLS)和主成分分析法(PCA),对输入ANN的光谱数据进行了主成分提取,使ANN分析时间从30多分钟缩短为10多秒钟;模型传递技术的引入,克服了遥感FTIR谱图分析中反复建模问题。经过优化的方法,实现了用EPA数据建模,对大气中的四组分混合体系——丙酮、苯、三氯甲烷和甲醇的遥感、实时、准确测定,PLS-ANN模型得到的结果最好,对丙酮、苯、三氯甲烷和甲醇的预测误差分别为0.043,0.031,0.034,0.051,保证了遥感FTIR对大气中有毒气体混合物实时、准确、快速监测。A method for interpretation of remote sensing FTIR spectra was set up based on ANN model. Considering long training time and over-fitting problem of ANN, two methods, partial least squares (PLS) and principal component analysis (PCA), were utilized to extract principal components of spectra, process time decrease from about 30 minutes to a few seconds. Meanwhile, the idea of calibration transfer was used to overcome the limitation of calibration model in remote sensing FTIR spectra a- nalysis. With the optimization of ANN model, four-component mixtures of acetone, benzene, chloroform and methanol were predicted in a remote sensing and real-time way while the calibration model was built with EPA data. The best performance was yielded with PLS-ANN model, and the root mean square error (RMSE) of acetone, benzene, chloroform and methanol were 0. 043, 0. 031, 0. 034 and 0. 051 respectively, which confirm the real-time, correct and quick analysis of remote sensing FTIR in air monitoring.

关 键 词:偏最小二乘法 主成分分析 人工神经网络 模型传递 多组分定量分析 

分 类 号:O657.3[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象