基于偏最小二乘与神经网络耦合的储层参数预测  被引量:4

Prediction of the reservoir parameters based on the coupling of neural network model with partial least square method

在线阅读下载全文

作  者:戈汉权[1] 施泽进[2] 任在清[1] 

机构地区:[1]成都理工大学信息管理学院,成都610059 [2]成都理工大学"油气藏地质及开发工程"国家重点实验室,成都610059

出  处:《成都理工大学学报(自然科学版)》2007年第6期618-620,共3页Journal of Chengdu University of Technology: Science & Technology Edition

基  金:数学地质四川省高校重点实验室资助;国家自然科学基金委员会与中国石油化工股份有限公司联合基金资助项目(40739903)

摘  要:将偏最小二乘回归(PLS)与神经网络(NN)耦合,建立了储层参数预报模型。利用偏最小二乘对影响储层参数的诸多因素进行分析,提取对因变量影响强的成分,从而克服了变量间的多重相关性问题,降低了神经网络的输入维数;同时,利用神经网络建模可以较好地解决非线性的储层参数预测问题。计算实例表明,本耦合模型的拟合和预报精度优于独立使用神经网络模型的精度。This paper proposes a model for predicting the reservoir parameters based on the combination of neural network with the partial least square method. The factors affecting the reservoir parameters are analyzed by means of partial least square method to extract the most important components, so that not only the problem of multi-correlation among variables can be solved but also the amount of input dimensions of the neural network can be reduced. Besides, the application of neural network helps to solve the problem of nonlinearity of the model. The applied example shows that the proposed model has higher precision than those models based on neural network method only.

关 键 词:偏最小二乘 神经网络 储层参数预测 

分 类 号:O211.5[理学—概率论与数理统计] TP183[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象