检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董继扬[1] 徐乐[1] 曹红婷[1] 戴晓侠[2] 李学军[3] 杨叔禹[3] 陈忠[1]
机构地区:[1]厦门大学物理系,福建厦门361005 [2]厦门大学医学院,福建厦门361005 [3]厦门市第一医院,福建厦门361005
出 处:《波谱学杂志》2007年第4期381-393,共13页Chinese Journal of Magnetic Resonance
基 金:福建省自然科学基金(T0750015);厦门市重大疾病攻关研究基金(3502Z20051027)资助项目
摘 要:对NMR波谱数据的统计分析是基于NMR代谢组学研究的关键问题之一.鉴于NMR波谱信号可以近似为样品中各种成分谱信号的线性叠加,本文将非负矩阵分解(NMF)方法引入基于NMR代谢组学的数据处理中,并与代谢组学中常用的统计方法——主成分分析(PCA)进行比较.通过NMF和PCA两种方法对健康志愿者与2型糖尿患者血液和尿液的NMR谱图的统计分析,对所获取的特征代谢物进行比较和验证,并探讨了PCA方法可能存在的不足之处及其原因;阐明了NMF方法是基于NMR的代谢组学研究中较理想的数据分析方法.最后,讨论了基于NMR代谢组学在糖尿病研究中的前景.Multivariate statistical methods are frequently used in nuclear magnetic resonance (NMR)-based metabonomic researches to analyze NMR spectra of biofluids. Based on the fact that the NMR spectrum of a given sample are a sum of the NMR signals from all constituting ingredients, we developed a non-negative matrix factorization (NMF) method, capable of finding parts-based and linear representations of non-negative data, for analyzing the data acquired in NMR-based metabonomic studies. Detail comparisons were made between the NMF method and the commonly use principal component analysis (PCA) method by employing the two methods to discriminate the urine and serum spectra of type-2 diabetic patients from those of the healthy controls. It was shown that, compared to the PCA method, the NMF method is a more effective and ac- curate method for processing NMR spectra acquired in the metabonomic studies, partially due to its unique features such as the non-negative constraints and part-based representation. The disadvantages of the PCA method were also analyzed and discussed.
关 键 词:基于NMR的代谢组学 2型糖尿病 非负矩阵分解 主成分分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249