用于负荷预测的层次聚类和双向夹逼结合的多层次聚类法  被引量:26

Load Forecasting by Multi-Hierarchy Clustering Combining Hierarchy Clustering with Approaching Algorithm in Two Directions

在线阅读下载全文

作  者:贾慧敏[1] 何光宇[1] 方朝雄[2] 李可文[2] 姚宇臻[2] 黄妹妹[2] 

机构地区:[1]电力系统及发电设备控制和仿真国家重点实验室(清华大学电机系),北京市海淀区100084 [2]福建省电力公司,福建省福州市350003

出  处:《电网技术》2007年第23期33-36,共4页Power System Technology

基  金:国家自然科学基金资助项目(50507013)~~

摘  要:针对传统聚类方法对负荷曲线形状的相似性重视不足的问题,提出了一种基于相似性原理的新的聚类方法——层次聚类和双向夹逼相结合的多层次聚类方法,该方法可以同时衡量负荷曲线形状的趋势相似性和形状相似性。分别采用该方法与传统的基于欧氏距离的层次聚类方法以某省2005年负荷数据为历史数据进行预测,结果表明本文提出方法对负荷曲线形态细节以及气候因素与负荷之间的复杂相关性具有较强的识别能力。In order to overcome the defect of traditional clustering method which has no regard for the similarity of the shapes of load curves, a new similarity principle based clustering method, i.e., multi-hierarchy clustering, in which the hierarchy clustering combines with approaching algorithm in two directions is proposed, The proposed method can measure the tendency similarity and shape similarity of load curves simultaneously. By use of both the proposed method and traditional Euclidean distance based hierarchy clustering and taking the load data of a certain provincial power network in the year of 2005 as historical data, the load are forecasted respectively by these two methods. Forecasting results show that the proposed method possesses better ability to recognize the details of load curve shapes and the complex correlativity between climatic factors and loads.

关 键 词:聚类 欧氏距离 双向夹逼法 负荷预测 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象