基于加权支持向量机的网络入侵检测研究  被引量:2

Network intrusion detection based on weighted support vector machine

在线阅读下载全文

作  者:朱芳芳[1] 王士同[1] 李志华[1] 

机构地区:[1]江南大学信息工程学院,江苏无锡214122

出  处:《计算机工程与设计》2007年第22期5374-5377,共4页Computer Engineering and Design

摘  要:在网络入侵检测中,数据类别不均衡训练集的使用将产生分类偏差,主要原因在于对每个训练样本的错误分类的惩罚系数是相等的。加权支持向量机对每个错误分类样本的惩罚系数是不一样的,这对小样本来说提高了分类精度,克服了常规SVM算法不能灵活处理样本的缺陷。但这是以大样本分类精度的降低以及总分类精度的下降为代价的。实验结果证明,将加权支持向量机用于网络入侵检测中是可行的、高效的。In the network intrusion detection, when the use of training sets with uneven class sizes results in classification biases towards the class with the large training size. The main causes lie in that the penalty of misclassification for each training sample is considered equally. Weighted support vector machines for classification where penalty ofmisclassification for each training sample is different, and then the classification accuracy for the class with small training size is improved, and overcomes the drawback which standard support vector machinen algorithm can not deal with this sample flexibly. But this improvement is obtained at the cost of the possible decrease of classification accuracy for the class with large training size and the possible decrease of the total classification accuracy. This introduce it to network intrusion detection, the experiment results prove it is effective and efficient.

关 键 词:支持向量机 加权系数 网络入侵检测 分类 不均衡训练集 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象