检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与设计》2007年第22期5374-5377,共4页Computer Engineering and Design
摘 要:在网络入侵检测中,数据类别不均衡训练集的使用将产生分类偏差,主要原因在于对每个训练样本的错误分类的惩罚系数是相等的。加权支持向量机对每个错误分类样本的惩罚系数是不一样的,这对小样本来说提高了分类精度,克服了常规SVM算法不能灵活处理样本的缺陷。但这是以大样本分类精度的降低以及总分类精度的下降为代价的。实验结果证明,将加权支持向量机用于网络入侵检测中是可行的、高效的。In the network intrusion detection, when the use of training sets with uneven class sizes results in classification biases towards the class with the large training size. The main causes lie in that the penalty of misclassification for each training sample is considered equally. Weighted support vector machines for classification where penalty ofmisclassification for each training sample is different, and then the classification accuracy for the class with small training size is improved, and overcomes the drawback which standard support vector machinen algorithm can not deal with this sample flexibly. But this improvement is obtained at the cost of the possible decrease of classification accuracy for the class with large training size and the possible decrease of the total classification accuracy. This introduce it to network intrusion detection, the experiment results prove it is effective and efficient.
关 键 词:支持向量机 加权系数 网络入侵检测 分类 不均衡训练集
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222