检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东交通大学信息工程学院,江西南昌330013
出 处:《华东交通大学学报》2007年第5期85-88,共4页Journal of East China Jiaotong University
摘 要:提出使用特征脸和最小二乘支持向量机(LS-SVM)分类器相结合进行人脸性别分类.我们首先从训练图像中求得特征脸空间,然后将训练集和测试集图像投影到特征脸空间得到投影系数.使用训练样本投影系数训练LS-SVM分类器,对训练图像和测试图像进行分类试验,同时计算出分类准确率,实验结果表明LS-SVM分类要比其他分类算法有更好的优越性.在实验中我们也使用交叉验证来确定特征脸数目和核函数参数.The techniques of eigenfaces and Least Squares Support Vector Machine( LS- SVM) classifier are combined to categorize gender from facial knowledge in this paper. We will firstly establish the eigenfaces from the training images, and then obtain the projection coefficients for training and testing images in the space spanned by the eigenfaces. The LS - SVM classifiers are built with training coefficients, which are used for classifying training and testing images, and classification accuracy percentage values are calculated. The experiments are implemented with self- made facial images, and the results demonstrate that LS - SVM classification has better performance than the other classification algorithms. In experiments we also use cross validation to determine the number of selected primary components and kernel function parameter.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.16