基于Boosting算法和RBF神经网络的交通事件检测  被引量:5

Traffic incidents detection based on Boosting method and RBF neural network

在线阅读下载全文

作  者:党长青[1] 张景辉[1] 沈志远[1] 

机构地区:[1]唐山学院信息工程二系,河北唐山063020

出  处:《计算机应用》2007年第12期3105-3107,共3页journal of Computer Applications

基  金:河北省自然科学基金资助项目(F2007000682)

摘  要:提出一种新颖的基于Boosting RBF神经网络的交通事件检测方法。对Boosting算法进行改进,采用更有效的参数求解方法,即弱分类器的加权参数不但与错误率有关,还与其对正样本的识别能力有关。以上下游的流量和占有率作为特征,将RBF神经网络作为分类器进行交通事件的自动分类与检测。为了进一步提高神经网络的泛化能力,采用Boosting方法进行网络集成。最后运用Matlab进行了仿真分析,结果表明提出的交通事件检测算法利用较少样本数据即可快速实现交通事件检测。A new method was proposed for traffic incidents detection based on Boosting RBF neural network. The improved Boosting adopted a new method to acquire parameters, and the weighted parameters of weak classifiers were determined not only by the error rates, but also by their abilities to recognize the positive samples. The features of flow and occupancy rate were extracted from traffic incidents. Then RBF neural network was used to classify the traffic incidents. In order to improve the precision of the RBF neural network for traffic incidents detection, Boosting algorithm was used to build an integration-neural network. Finally a simulation using Matlab was carried out, and the results show that this algorithm can detect incidents rapidly by using a few samples.

关 键 词:交通事件检测 BOOSTING方法 RBF神经网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象