检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡俊锋[1] 陈蓉[1] 陈源[1] 陈浩[1] 于中华[1]
出 处:《计算机应用》2007年第11期2866-2869,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(60473071);高等学校博士学科点专项科研基金项目(20020610007);四川大学计算机学院青年基金项目
摘 要:生物医学命名实体识别(Bio-NER)是生物医学文献挖掘利用的基础工作。针对目前Bio-NER存在的困难和问题,提出了松耦合的Bio-NER算法LCA,该算法利用启发规则过滤器、词性模板匹配及改良的隐马尔科夫模型(HMM)识别生物医学命名实体。在GENIA corpus3.02语料库上进行的实验表明,LCA可以达到80%的准确率和89%的召回率,优于相关工作中的结果。The rapid development of biology and medicine in recent years leads to speedy accumulation of gigabyte biomedical information. How to use technical methods to mine and utilize the information becomes more and more important. Biomedical Named Entity Recognition (Bio-NER) is a basal work for mining and utihzing biomedical literatures. Concerning the difficulties and problems of the existing Bio-NER algorithms, a loose coupling algorithm named LCA for Bio-NER was proposed. The biomedical named entities were recognized based on heuristic rule filter, POS pattern matching pattern matching and modified Hidden Markov Model (HMM) approaches. The experimental results on GENIA corpus 3.02 show that the precision and recall of LCA are around 80% and 89% respectively, higher than the results of the related works.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30