检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦涛[1]
机构地区:[1]淮海工学院数理科学系,江苏连云港222005
出 处:《淮海工学院学报(自然科学版)》2007年第4期13-16,共4页Journal of Huaihai Institute of Technology:Natural Sciences Edition
摘 要:为了加深对等能曲面的拓扑结构的了解,利用正合同调序列及Morse不等式的方法估计了等能曲面一般维数奇异同调群的秩的上界.分别对等能曲面的0维、1维、2维奇异同调群的秩进行了估计,得出了估计不等式,依据0维、1维、2维的估计不等式,归纳出一般维数奇异同调群的秩的上界估计不等式,证明此归纳不等式成立,并将其运用到刚体运动的力学例子中,与前人研究结果对照,验证其正确性.This paper intends to make us understand topological structures deeply, and it takes advantage of exact homology sequence and Morse inequalities to estimate the upper bound of the rank of q-dimensional singular homology group of energy level surface (q is an arbitrary nature number). It estimates the ranks of 0-dimension, 1-dimension and 2-dimension homology groups, and guesses a formula for the rank of q-dimension singular homology group. It proves that the guess is right and applies it to an example of rigid body dynamics, comparing it with other schol- ars' conclusions. It succeeds in obtaining a new inequality which estimates the upper bound of the rank of q-dimension singular homology group of energy level surface.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7