检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张
机构地区:[1]河北师范学院数学研究所
出 处:《应用数学学报》1997年第4期487-497,共11页Acta Mathematicae Applicatae Sinica
摘 要:一个Mendelsohn三元系MTS(υ,λ)=(X,B)被称作是自反的,如果它与它的逆(X,B-1)是同构的,其中B-1={〈z,y,x〉;〈x,y,z〉∈B.在[2]中已给出了简单自反MTS((υ,1)的存在谱,即υ≡0,1(mod3),υ3且υ≠6.本文讨论一般λ的情况,并得到简单自反MTS(υ,λ)的存在谱是λυ(υ-1)≡0(mod3);λυ-2,υ3且(υ,λ)≠(6,1);(6,3).Let X be a υ-set, v 3. A cyclic triple from X is a collection of three ordered pairs (x, y) , (y, z) and (z, x), where x, y, z are distinct elements of X. It is denoted by (x, y, z)(or (y, z, x) or (z, x, y)). A Mendelsolsn triple system on X is a pair (X, B) where B is a collection of some cyclic triples from X such that each ordered pair of X appears in λ blocks,denoted by MTS (υ,λ). A Mendelsohn triple system MTS(υ,λ) = (X, B) is called selfconverse if there is a permutation f on X which maps B onto B-∞= {B-∞=~ (,, §); B =(§, , ) ∈B}. We denote a self-converse MTS(υ,λ) by SCMTS(υ,λ)=(X, B, {). A design called simple if it has no repeated blocks. The problem of the existence spectrum of SCMTS was posed by C.J. Colbouru and A. Rosa in their survey. The case of λA=1 was given, i.e.υ=0,1 (mod 3), υ 3 and υ≠6. In this paper we discuss the case of general λ and give a better result-the spectrum of simple SCMTS(υ,λ), i.e. λυ(υ-1)≡0 (mod 3),λυ-2, υ 3 and (υ,λ)≡(6, 1), (6,3).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.235