检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁敬国[1] 胡贤磊[1] 焦景民[1] 佘广夫[1] 刘相华[1]
机构地区:[1]东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110004
出 处:《钢铁研究学报》2007年第12期56-59,共4页Journal of Iron and Steel Research
基 金:国家自然科学基金资助项目(50104004)
摘 要:为了避免BP神经元网络易陷入局部极值和基本粒子群(PSO)-神经元网络早熟收敛问题,采用一种自适应变异的粒子群优化算法训练神经元网络,根据轧制力的实测值和神经元网络的预报值确定粒子群算法的适应度函数,按照权重梯度方向进行变异操作,并首次将该方法应用到热连轧机组轧制力预报中。通过攀钢热轧板厂现场数据运算表明,该方法的预报误差平均值比传统数学模型低1.65%,比BP神经元网络低0.55%,收敛速度比BP神经元网络提高了约1/4,为进一步提高精轧机组轧制力预报精度提供了一种新的有效方法。In order to avoid easily getting in local extremum like BP neural networks and premature convergence like PSO-neural networks, an improved particle swarm optimization algorithm with the adaptive mutation is used to train neural networks by means of determining sufficiency function of particle swarm optimization algorithm according to measured and predicted rolling force, after that variation operation along the direction of weight gradient starts, which is used for rolling force prediction of hot strip mills at first time. By off-line application for the data from hot strip mill of Panzhihua Steel, it has shown that the average prediction error of this method is 1.6 % lower than traditional model and 0.55% lower than BP neural networks, its convergent speed is improved by 1/4 than BP neural networks, so it provides a new valid method for improving prediction of rolling force of hot strip mill.
分 类 号:TG335[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30