检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马忠亮[1] 徐方亮[1] 刘海燕[1] 张文才[1]
机构地区:[1]中北大学化工与环境学院,山西太原030051
出 处:《含能材料》2007年第6期637-640,共4页Chinese Journal of Energetic Materials
摘 要:运用基于最优保存和自适应交叉变异的混合遗传算法训练的BP神经网络,根据三维数据建模和炸药的分子量、氧平衡以及装药密度,构建了一个3-4-1型的炸药爆速预测BP神经网络模型。同时利用训练好的神经网络模型对炸药的爆速进行了预测。预测结果表明:模型预测值与有关文献的实验值接近,绝对误差为±7%;也说明了炸药的分子量,氧平衡和装药密度等相关参数与其爆速具有一定的可类推性。The model predicting the detonation velocity of explosives was founded on the back propagation (BP) neural-network (BP neural-network has been trained by a hybrid genetic algorithm which based on elitist model algorithm and adaptive crossover mutation) , the three-dimension data modeling, molecular weight, oxygen balance and charge density of explosives. The detonation velocity of some explosives were predicted by using the ameliorative BP neural network model. The forecast results indicate that the predicted values by using this model approaches the experimental volues in literature. The absolute errors are ± 7%. And there are some analogies between the relative parameters ( including the molecular, oxygen balance and charge density of explosives) and the detonation velocity of explosives. The results also show that the yield model has high predicting accuracy. It is a novel method for predicting and estimating the detonation velocity of new explosives.
关 键 词:物理化学 爆速 炸药 人工神经网络 混合遗传算法
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.79