检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微波学报》2007年第6期36-39,共4页Journal of Microwaves
基 金:国家自然科学基金资助项目(编号:60371029)
摘 要:采用一种改进的人工神经网络反向传播算法(BP算法),将动量方法和可变学习速度的BP算法(VLBP算法)结合,并且在每个样本点更新权值和偏置值,这种算法称为动量VLBP算法。用C语言实现该算法,并将其运用到对一种新型组合式非周期性缺陷接地结构(CNPDGS)低通滤波器的神经网络建模之中。以CNPDGS的结构尺寸和频率为输入样本,传输系数参数为输出样本,建模成功后,在样本范围内输入结构尺寸和频率能够很快得出准确的传输系数。结果表明应用动量VLBP算法的神经网络相对于FDTD分析方法可以节省大量的时间,并且与基本的BP算法相比,可以加速算法收敛、减少训练时间。An improved artificial neural network (ANN) model of lowpass filter with combinatorial nonperiodic defected ground structures (CNPDGS) is developed in this paper. The momentum VLBP algorithm used in the model integrates the momentum with the variable learning rate backpropagation (VLBP), updates the weight and the bias at each sample point, and is accomplished by C language. The structure size of CNPDGS and the frequency are defined as the input samples of the ANN model, the parameters of transmission coefficient are defined as the output samples. Within the range of training, the parameters of transmission coefficient can be obtained correctly and quickly from the model which has been trained successfully. The result indicates that the momentum VLBP algorithm is more timesaving than FDTD and more efficient than the basic BP algorithm.
关 键 词:神经网络 反向传播算法 组合式非周期性缺陷接地结构 动量VLBP
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.94.214