检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学》2007年第12期157-160,共4页Computer Science
基 金:国家自然科学基金资助(编号:60472060)
摘 要:本文基于最大散度差准则(MSDC),利用统计不相关投影空间,提出了一组具有统计不相关性的最佳鉴别矢量的计算方法。该方法的目标是寻求一组鉴别矢量集,既要使投影后的特征空间的类间散度最大,而类内散度最小;又要使最佳鉴别矢量之间具有统计不相关性。另外,本文还揭示了最大散度差鉴别准则与Fisher准则的内在关系。在ORL与NUST603人脸库上的实验结果表明,本文所提出的方法在识别性能上优于原MSDC特征抽取方法与传统的PCA方法。Making use of the statistical uncorrelated projection space, a new method of statistically uncorrelated optimal discriminant vectors is presented in this paper based on the maximum scatter difference discriminant criterion. The uncorrelated optimal discriminant vectors are obtained by resolving the orthogonal vectors based on maximum scatter difference discriminant criterion in the uncorrelated projection space. The purpose of the method is to maximum the inter-class scatter while simultaneously minimizing the intra-class scatter after the projection, and eliminate the statistically correlation between features. Besides, this paper reveals the relation between the maximum scatter difference discriminant criterion and Fisher criterion for feature extraction. Experimental results on ORL and NUST603 face database show the effectiveness of the proposed algorithm. The recognition rate of the method is superior to MSDC and PCP.
关 键 词:最大散度差准则 统计不相关投影空间 最佳鉴别矢量 统计不相关 特征抽取 人脸识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229