Estrogen Receptor α(ERα) Target Gene LRP16 Interacts with ERα and Enhances Receptor's Transcriptional Activity  被引量:1

Estrogen Receptor α(ERα) Target Gene LRP16 Interacts with ERα and Enhances Receptor's Transcriptional Activity

在线阅读下载全文

作  者:韩为东 赵亚力 吴志强 孟元光 臧丽 母义明 

机构地区:[1]Department of Molecular Biology,Institute of Basic Medicine [2]Department of Obstetrics and Gynecology [3]Department of Endocrinology,PLA General Hospital

出  处:《Chinese Journal of Cancer Research》2007年第4期233-237,共5页中国癌症研究(英文版)

基  金:This project was supported by the National Natural Science Foundation of China(No.30670809);PLA National Science Fund for Distinguished Young Scholars Grant(No.06J017).

摘  要:Objective:It has been shown that LRP16 is an estrogen-induced gene through its receptor α(ERα). Although there is evidence demonstrating that inhibition of LRP16 gene expression in MCF-7 human breast cancer cells partially attenuates its estrogen-responsiveness, the underlying molecular mechanism is still unclear. Here, the effect of LRP16 expression on the ERα signaling transduction was investigated. Methods: Cotransfection assays were used to measure the effect of LRP16 on ERα-mediated transcriptional activity. GST-pulldown and immunoprecipitation (ColP) assays were employed to investigate the physical interaction of LRP16 and ERα. The mammalian two-hybrid method was used to map the functional interaction region. Results: the results of cotransfection assays demonstrated that the transcriptional activities of ERα were enhanced in α LRP16 dose-dependent manner in MCF-7 in the presence of estrogen, however, it was abolished in the absence of E2 in MCF-7 cells. The physical interaction of LRP16 and ERα proteins was confirmed by GST-pulldown in vitro and ColP in vivo assays, which was enhanced by E2 but not dependent on its presence. Furthermore, the results of the mammalian two-hybrid assays indicated that the binding region of ERα to LRP16 located at the A/B AF-1 functional domain and E2 stimulated the binding of LRP16 to the full-length ERα molecule but not to the A/B region alone. Conclusion: These results support a role for estrogenically regulated LRP16 as an ERα coactivator, providing a positive feedback regulatory loop for ERα signal transduction. Based on this function of LRP16, we propose that ERα-positive breast cancer patients with high expression of LRP16 might benefit from targeting LRP16 therapy.Objective:It has been shown that LRP16 is an estrogen-induced gene through its receptor α(ERα). Although there is evidence demonstrating that inhibition of LRP16 gene expression in MCF-7 human breast cancer cells partially attenuates its estrogen-responsiveness, the underlying molecular mechanism is still unclear. Here, the effect of LRP16 expression on the ERα signaling transduction was investigated. Methods: Cotransfection assays were used to measure the effect of LRP16 on ERα-mediated transcriptional activity. GST-pulldown and immunoprecipitation (ColP) assays were employed to investigate the physical interaction of LRP16 and ERα. The mammalian two-hybrid method was used to map the functional interaction region. Results: the results of cotransfection assays demonstrated that the transcriptional activities of ERα were enhanced in α LRP16 dose-dependent manner in MCF-7 in the presence of estrogen, however, it was abolished in the absence of E2 in MCF-7 cells. The physical interaction of LRP16 and ERα proteins was confirmed by GST-pulldown in vitro and ColP in vivo assays, which was enhanced by E2 but not dependent on its presence. Furthermore, the results of the mammalian two-hybrid assays indicated that the binding region of ERα to LRP16 located at the A/B AF-1 functional domain and E2 stimulated the binding of LRP16 to the full-length ERα molecule but not to the A/B region alone. Conclusion: These results support a role for estrogenically regulated LRP16 as an ERα coactivator, providing a positive feedback regulatory loop for ERα signal transduction. Based on this function of LRP16, we propose that ERα-positive breast cancer patients with high expression of LRP16 might benefit from targeting LRP16 therapy.

关 键 词:Estrogen receptorα LRP16 INTERACTION COACTIVATOR 

分 类 号:Q75[生物学—分子生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象