检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏大学材料科学与工程学院,镇江212013
出 处:《塑性工程学报》2008年第2期80-83,共4页Journal of Plasticity Engineering
基 金:国家自然科学基金资助项目(50575097);江苏大学高级人才基金资助项目(04JDG037)。
摘 要:挤压成形过程中由于坯料和模具之间的滑动接触摩擦和坯料的塑性变形产生热而使模具型腔表面温度升高,加剧模具的磨损。采用热力耦合有限元法计算挤压成形过程中模具型腔表面的温升,将模拟结果与人工神经网络相结合,以有限元模拟结果作为学习样本,训练BP神经网络模型,以此模型预测模具型腔表面的温升。根据预测结果分析了挤压锥角、挤压速度和摩擦系数对型腔温升的影响,为进一步建立挤压成形过程中模具型腔表面的温升模型和磨损预测模型奠定了基础。During the extrusion process, the heat gencrated by sliding contact friction and plastic deformation of billet leads to the temperature rise of cavity surface, which consequently aggravates the wear of dies. The temperature rise of die cavity surface during extrusion process is calculated by thermal-mechanical coupling FEM. Combining the simulation results and artificial neural network, BP neural network is trained with the simulation results as learning samples. The model is used to predict the temperature rise of die cavity surface and the influences of extrusion cone angle, extrusion speed and friction coefficient on temperature rise can be analyzed using the predictive results, which lays the foundation for the establishment of temperature rise model and wear prediction model of die cavity surface.
分 类 号:TG315[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222