检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院博士生队,石家庄050003 [2]解放军镇江船艇学院指挥系,镇江212003 [3]军械工程学院装备指挥与管理系,石家庄050003
出 处:《科学技术与工程》2008年第1期142-144,148,共4页Science Technology and Engineering
摘 要:准确的需求预测是装备保障链敏捷运行的重要条件。针对装备保障链需求预测过程中,需求不确定、样本数量较少的实际情况,采用了一种新的预测方法——支持向量机。该方法基于统计学习理论的原理,较好地解决了小样本、非线性的学习问题。建立了装备保障链需求预测的支持向量机模型。并以某物资的需求预测为例进行实例验证,计算结果表明,这种方法比传统的方法有更好的预测精度。Exact requirement prediction is an important condition for equipment support chain to work agilely. In allusion to the situation that requirement is uncertain and the number of test samples is fewer in the course of predicting requirement of equipment support chain, a new method, support vector machine, is given. The algorithm is based on statistical theory. It can solve the nonlinear learning problem of fewer samples. A support vector machine model is constructed to predict equipment support chain' s requirement. And an example of a certain mate- rial' s requirement' s prediction is given, whose result shows that the method can bring less error and better predicted precision compared with traditional methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40