检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梅红[1,2] 张厚福[1,2] 孙红军[1,2] 钟兴水[1,2]
机构地区:[1]石油大学地球科学系 [2]江汉石油学院
出 处:《石油大学学报(自然科学版)》1997年第3期24-28,共5页Journal of the University of Petroleum,China(Edition of Natural Science)
摘 要:以测井相分析和常规测井资料定性识别水淹层的理论为基础,运用神经网络技术,对勘探阶段的探井进行了沉积相识别,并对油田开发阶段的水淹层进行了级别划分.对长庆、大港等油田的4口探井进行了测井相分析,并对20多口开发井的单井进行了评价.结果表明,神经网络技术可以有效地应用于油田勘探开发测井中.Based on the theories of logging facies analysis and qualitative methods for flooding layers recognition by logging data, neural network technique has been introduced both in explorating area to identify sedimentary facies and in developing fields to distinguish flooding layers from oil bearings, as well as to determine the flooding levels. In the research, about 4 explorating wells were analyzed with logging faccies and other almost 30 developing wells were evaluated by this technique. All results show that the neural network technique is effective to deal with some problems meeting in explorating and developing stages of oilfield.
关 键 词:神经网络 测井相 沉积相 水淹层 水淹级别 油田
分 类 号:P631.84[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145