检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈绍仲[1]
机构地区:[1]宁波大学数学系
出 处:《数学学报(中文版)》1997年第3期333-344,共12页Acta Mathematica Sinica:Chinese Series
摘 要:本文用随机分析方法证明了拟线性抛物型方程ut+f(u)ux、uxx=0,u(0,x)=u0(x)在u0有界可测,f连续且f>0条件下,其解当→0时收敛于拟线性方程ut+f(u)ux=0,u(0,x)=u0(x)的熵解,即论证了“沾性消失法”解此方程的正确性,1957年Oleinik曾用差分方法解决了此问题。这里用概率方法重新获得此结果。lt is proved by stochastic analysis method that if u0 is bounded and mea- surable and f> 0 then the solution of Cauchy problem of the quasilinear parabolic partial differential equation u0+f(u)ux+=0 , u(0,x) =u0 (x) xonverges to the entropy solution of the quasilinear partial differential equation u0 +f (u)ux=0 , u(0,x) = u0(x), as - 0, that is the validity of ' vanishing viscosity' method for the equation. This is the well known result due to Oleinik by using difference method in 1975. The result of this paper suggests the importance of probabilistic method for solving nonlinear partial differeatial equations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15