Approaches to biosynthesis of salidroside and its key metabolic enzymes  被引量:2

Approaches to biosynthesis of salidroside and its key metabolic enzymes

在线阅读下载全文

作  者:Shi Ling-ling Wang Li Zhang Yan-xia Liu Yu-jun 

机构地区:[1]College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China [2]Department of Medicine, Tibet College for Nationalities, Xianyang 712082, P. R. China

出  处:《Forestry Studies in China》2007年第4期295-299,共5页中国林学(英文版)

摘  要:As a main component of efficiency in Rhodiola plants, salidroside is a promising environmental acclamation medicine and possesses specific medical properties against symptoms of fatigue, old age, microwave radiation, viral infections and tumors. Salidroside plays important roles, especially in military, aerospace, sport and healthcare medicine and has, therefore, recently, drawn more and closer attention. This article probes mainly into the probable biosynthetic pathway of salidroside following a brief introduction of the exploitation and utilization values of Rhodiola plants and the current condition of its natural resources. We have come to the conclusion that tyrosol, the aglycon of salidroside, is biosynthesized through the well-characterized shikimic acid pathway. A molecule of glucose is transferred by the UDP-glucosyltransferase (or possibly by the β-D-glucosidase too) to the tyrosol to form salidroside. On the other hand, salidroside may be degraded into tyrosol and glucose by β-D-glucosidase. Progress in research of these two key-enzymes, involved in the metabolism of salidroside, is finally elaborated.As a main component of efficiency in Rhodiola plants, salidroside is a promising environmental acclamation medicine and possesses specific medical properties against symptoms of fatigue, old age, microwave radiation, viral infections and tumors. Salidroside plays important roles, especially in military, aerospace, sport and healthcare medicine and has, therefore, recently, drawn more and closer attention. This article probes mainly into the probable biosynthetic pathway of salidroside following a brief introduction of the exploitation and utilization values of Rhodiola plants and the current condition of its natural resources. We have come to the conclusion that tyrosol, the aglycon of salidroside, is biosynthesized through the well-characterized shikimic acid pathway. A molecule of glucose is transferred by the UDP-glucosyltransferase (or possibly by the β-D-glucosidase too) to the tyrosol to form salidroside. On the other hand, salidroside may be degraded into tyrosol and glucose by β-D-glucosidase. Progress in research of these two key-enzymes, involved in the metabolism of salidroside, is finally elaborated.

关 键 词:RHODIOLA SALIDROSIDE TYROSOL UDP-GLUCOSYLTRANSFERASE β-D-glucosidase 

分 类 号:S72[农业科学—林木遗传育种]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象