Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro  被引量:8

Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro

在线阅读下载全文

作  者:Sheng FANG Yu-dong QIU Liang MAO Xiao-lei SHI De-cai YU Yi-tao DING 

机构地区:[1]Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical College of Nanjing University, Nanjing 210008, China

出  处:《Acta Pharmacologica Sinica》2007年第12期1924-1930,共7页中国药理学报(英文版)

基  金:Project supported by the Natural Science Foundation of Jiangsu Province,PR China(№ BK2006008)

摘  要:Aim: Embryonic stem (ES) cells are being widely investigated as a promising source of hepatocytes with their proliferative, renewable, and pluripotent capacities. However, controlled and scalable ES cell differentiation culture into functional hepatocytes is challenging. In this study, we examined the differentiat- ing potential of embryoid-body cells derived from ES cells into hepatocytes in alginate microbeads containing exogenous growth factors in vitro. Methods: Embryoid bodies were formed from ES cells by suspension methods. Embryoid bodies cultured for 5 d were treated with trypsin-EDTA. The disaggregated cells were encapsulated in alginate microbeads and stimulated with exogenous growth factors to induce hepatic differentiation. In the course of cell differentiation, cell morphology and viability were observed, and the expression patterns of some genes of the hepatocyte were confirmed by RT-PCR. An immunofluorescence analysis revealed the expression of albumin (ALB) and cytokeratin-18 (CK18). Hepatocyte functional assays were confirmed by the secretion of ALB and urea. Results: We showed that embryoid-body cells could maintain cell viability in alginate microbeads in vitro. We also found that directed differentiated cells expressed several hepatocyte genes including ct-fetoprotein (AFP), ALB, Cyp7a 1, CK18, transthyretin (TTR) and tyrosine aminotransferase (TAT) and produced ALB and urea in alginate microbeads. The directed differentiated cells expressed ALB and CK18 proteins on d 14. However, embryoid-body cells could not form hepatocytes without exogenous growth factors in alginate microbeads. Conclusion: The differentiation of embryoid-body cells into hepatocytes con- taining exogenous growth factors in alginate microbeads gives rise to functional hepatocytes and may develop scalable stem cell differentiation strategies for bioartificial livers and hepatocyte transplantation.Aim: Embryonic stem (ES) cells are being widely investigated as a promising source of hepatocytes with their proliferative, renewable, and pluripotent capacities. However, controlled and scalable ES cell differentiation culture into functional hepatocytes is challenging. In this study, we examined the differentiat- ing potential of embryoid-body cells derived from ES cells into hepatocytes in alginate microbeads containing exogenous growth factors in vitro. Methods: Embryoid bodies were formed from ES cells by suspension methods. Embryoid bodies cultured for 5 d were treated with trypsin-EDTA. The disaggregated cells were encapsulated in alginate microbeads and stimulated with exogenous growth factors to induce hepatic differentiation. In the course of cell differentiation, cell morphology and viability were observed, and the expression patterns of some genes of the hepatocyte were confirmed by RT-PCR. An immunofluorescence analysis revealed the expression of albumin (ALB) and cytokeratin-18 (CK18). Hepatocyte functional assays were confirmed by the secretion of ALB and urea. Results: We showed that embryoid-body cells could maintain cell viability in alginate microbeads in vitro. We also found that directed differentiated cells expressed several hepatocyte genes including ct-fetoprotein (AFP), ALB, Cyp7a 1, CK18, transthyretin (TTR) and tyrosine aminotransferase (TAT) and produced ALB and urea in alginate microbeads. The directed differentiated cells expressed ALB and CK18 proteins on d 14. However, embryoid-body cells could not form hepatocytes without exogenous growth factors in alginate microbeads. Conclusion: The differentiation of embryoid-body cells into hepatocytes con- taining exogenous growth factors in alginate microbeads gives rise to functional hepatocytes and may develop scalable stem cell differentiation strategies for bioartificial livers and hepatocyte transplantation.

关 键 词:ALGINATE cell culture ENCAPSULATION HEPATOCYTES stem cell differentiation 

分 类 号:R329.2[医药卫生—人体解剖和组织胚胎学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象