检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,沈阳110004 [2]辽宁省电力有限公司,沈阳110000
出 处:《计算机应用》2008年第1期104-107,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(60274009);教育部博士点基金资助项目(20020145007)
摘 要:针对标准粒子群优化算法易陷入局部最优点的缺点,提出了动态双种群粒子群优化算法(DDPSO)。该算法中两个子种群规模随进化过程不断变化,进化中分别采用不同的学习策略且相互交换信息。将该算法应用于机组组合问题中,采用实数矩阵编码方法对发电计划进行编码,将两层优化问题转化为单层优化问题,直接运用DDPSO算法求解。仿真结果表明,用该方法解决机组组合问题具有良好的精度和鲁棒性。Dynamic Double-population Particle Swarm Optimization (DDPSO) algorithm was presented to solve the problem that the standard PSO algorithm easily fell into a locally optimized point, where the population was divided into two sub-populations varying with their own evolutionary learning strategies and exchanging between them. The algorithm had been applied to power system Unit Commitment (UC). The DDPSO particle consisted of a two-dimensional real number matrix representing the generation schedule. According to the proposed coding manner, the DDPSO algorithm could directly solve UC. Simulation results show that the proposed method performs better in term of precision and convergence property,
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.200.242