检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周浩[1] 陈万春[1] 殷兴良[1] 刘洪甜[2]
机构地区:[1]北京航空航天大学宇航学院,北京100083 [2]装甲兵工程学院兵器工程系,北京100072
出 处:《弹道学报》2007年第4期26-29,共4页Journal of Ballistics
摘 要:通过极大值原理推导出时间最短弹道优化问题的必要条件和边值条件.采用遗传算法和邻近极值法求解了最优控制的两点边值问题.从次优化弹道得到攻角的变化规律,再从次优化弹道估计出初始伴随变量的范围,用遗传算法在此范围内优化初始伴随变量找到全局近似最优值,再用邻近极值法满足边值条件和约束条件.算例求解了满足热流和过载约束的最短时间弹道,与次优化弹道进行比较,可知用最优控制方法得到的最短飞行时间小于次优化方法得到的最短飞行时间.By Pontriaghin Maximum Principle, necessary condition and boundary condition of optimal trajectory were obtained. Two point boundary value problem(TPBVP) was solved by means of the genetic algorithm(GA) and neighboring extrem method(NEM). The scope of initial adjoint variables was estimated by the scope of the attack angle obtained by suboptimal trajectory. The goal optimal value was obtained by GA in the scope. The boundary value condition and constraints can be satisfied by NEM. By a hypersonic numerical application, the control law of the angle of attack and time-shortest trajectory was gained. Compared with suboptimal flight scheme, the flight time obtained by optimal control method is shorter than that by suboptimal method.
分 类 号:V412.4[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188