检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱道宏[1] 陈剑平[1] 阙金声[1] 安鹏程[1]
出 处:《吉林大学学报(地球科学版)》2008年第1期86-91,共6页Journal of Jilin University:Earth Science Edition
基 金:国家自然科学基金项目(40272117);教育部优秀年轻教师基金项目(120413133);吉林大学985计划项目(105213200500007)
摘 要:针对洞室岩体质量问题,从洞室工程的角度选取能够反映岩体综合工程特性的6个参数,用可拓评判和专家审定的方法构建了决策样本集;再利用粗糙集理论对原始决策样本集进行约简操作,并分析各指标对决策的相对重要性;最后将约简结果生成的规则作为人工神经网络的输入,建立了洞室岩体质量评价模型。通过工程实例分析对比,该模型有效地简化神经网络的网络结构,减少网络的训练步数,提高网络的学习效率,能够较准确地反映洞室岩体的工程特性。To evaluate the tunnel rock quality, six parameters reflecting the general properties of rock engineering was selected to build the decision table, which was evaluated by extenics theory and expert examination, and rough sets theory was applied to reduce the original decision table and to analyze the relative importance of every parameter. Finally, the reduction results are transformed into rules, which are used as input of the BP neural networks. Combining rough sets theory with artificial neural networks, then the evaluation model of tunnel rock quality was established. Through the case study, the model can efficiently simplifies the networks structure, reduces the networks training period and has better study efficiency and can more precisely reflect the engineering characteristics of tunnel rock.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.227.158