检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:殷文[1]
机构地区:[1]东营职业学院
出 处:《吉林大学学报(地球科学版)》2008年第1期144-151,共8页Journal of Jilin University:Earth Science Edition
基 金:国家“863”项目(2002AA614010-6)
摘 要:在弹性波频率空间域有限差分数值模拟方面,差分网格及边界条件是影响弹性波模拟成功与否的关键,为了压制数值模拟中的网格频散,采用25点有限差分算子,建立了有限差分矩阵方程,且借鉴匹配层衰减边界条件思想,设计了弹性波频率空间域有限差分数值模拟算法。由于采用高阶有限差分法来提高差分格式的精度,将会导致计算量显著增加,为此,对频率空间域有限差分弹性波数值模拟方法,采用流水线技术与分治策略进行了并行算法研究,提高了计算效率,使得在合理的计算时间内更精确地模拟弹性波在弹性介质中的传播过程。For finite difference numerical simulation in elastic-wave frequency-space domain, difference grids and boundary condition are the key for elastic-wave modeling. 25-point finite-different operators were adopted to suppress grid dispersion in numerical simulation and finite-difference matrix equations were constructed. Making use of the idea of match-layer attenuation boundary condition, the numerical simulation algorithm of elastic-wave finite difference in frequency-space domain was designed. Besides, the computing loads were increased observably by using high-order finite-difference method to improve accuracy. So for elastic-wave numerical simulation of finite difference in frequency-space domain, parallel algorithm was also studied in combination with divided-conquer and pipelining technique to enhance computational efficiency, so that elastic wave propagation in elastic medium was simulated much more accurately in reasonable computation time.
分 类 号:P631.4[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200