检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵海娟[1] 王家龙[2] 宗位国[1] 唐云秋[1] 乐贵明[1]
机构地区:[1]中国气象局国家空间天气监测预警中心 [2]中国科学院国家天文台,北京100012
出 处:《地球物理学报》2008年第1期31-35,共5页Chinese Journal of Geophysics
基 金:中国气象局气象新技术推广项目(CMATG2005M09,CMATG2007M03);国家自然科学基金(50677020,10333040,10373017)资助
摘 要:简单介绍了径向基函数神经网络方法的原理和应用,发展了用径向基函数(RBF)对平滑月平均黑子数进行预报的方法.用不同的数据序列对网络进行训练,对未来8个月的平滑月平均黑子数进行预报.用该方法对第23周开始后的平滑月平均黑子数进行逐月预报,并与实测值进行比较,结果表明随着预报实效的延长预报误差被逐渐放大,该方法可以较准确地做出未来4个月的预报,绝对误差可以控制在20以内,标准差为4.8,相对误差控制在38%以内,大部分相对误差不超过15%(占总预报数的89%),具有较好的应用价值.用于网络训练的样本数量对预报结果会产生一定的影响.The Radial Basis Function (RBF) neural networks method is introduced and applied to the smoothed monthly mean sunspot number's (SMMSN) prediction for cycle 23 in this paper. Prediction methods are made respectively for predicting of SMMSNs for the next eight months by training the neural networks with different sets of data. A comparison of the SMMSN's predictions one to eight months in advance with the derived ones from the observational data for absolutely the most part of cycle 23 shows that this RBF neural networks method should be an applicable one for the mid-term solar activity forecast. A brief discussion give in the last section of this paper points out: (1) that the error of the prediction increases along with the time in advance, while for the prediction with an advanced time of ≤4 months the error can be controlled under 4.8 and 38%, and for 89% of this kind of prediction the relative error is ≤ 15%. (2) that size of the data set used for the training of the RBF neural networks would give an effect to the predicting ability of the prediction model.
分 类 号:P353[天文地球—空间物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.226