检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科学技术与工程》2008年第2期328-332,共5页Science Technology and Engineering
基 金:国家自然科学基金(60374026)资助
摘 要:对于带相关的输入白噪声和观测白噪声及相关观测白噪声的多传感器线性离散定常随机系统,用加权最小二乘(WLS)法提出了一种加权观测融合稳态Kalman滤波算法,并基于信息滤波器证明了它同集中式观测融合稳态Kalman滤波算法功能的等价性。因而,它具有渐近全局最优性,且可减少计算负担。一个跟踪系统数值仿真例子验证了它的功能等价性。For the muhisensor linear discrete time-invariant stochastic control systems with correlated input and measurement white noises, and with correlated measurement noises, a weighted measurement fusion steady-state Kalman filtering algorithm is presented by using the weighted least squares (WLS)method. Based on the information filter, it is proved that it is functionally equivalent to the centralized measurement fusion steady-state Kalman filte- ring algorithm, so that it has asymptotic global optimality, and can reduce the computational burden. A numerical simulation examples for a tracking systems verifies its functional equivalence.
关 键 词:多传感器信息融合 加权观测融合 相关噪声 稳态Kalman滤波 渐近全局最优性
分 类 号:O211.64[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3