基于遗传-支持向量机和遗传-径向基神经网络的有机物正辛醇-水分配系数QSPR研究  被引量:13

Research on QSPR for n-Octanol-Water Partition Coefficients of Organic Compounds Based on Genetic Algorithms-Support Vector Machine and Genetic Algorithms-Radial Basis Function Neural Networks

在线阅读下载全文

作  者:齐珺[1] 牛军峰[1] 王丽莉[1] 

机构地区:[1]北京师范大学环境学院水环境模拟国家重点实验室,北京100875

出  处:《环境科学》2008年第1期212-218,共7页Environmental Science

基  金:国家重点基础研究发展规划(973)项目(2003CB415204)

摘  要:基于遗传算法(GA)的因子筛选和支持向量机(SVM)的非线性回归,提出了1种改进的有机物定量结构-性质相关(QSPR)建模方法——遗传-支持向量机(GA-SVM),并将其用于38种食品工业常用有机物正辛醇-水分配系数(Kow)的QSPR建模.结果显示,QSPR模型选取了分子量、Hansen极性、沸点、含氧率和含氢率5种参数;模型的预测值与实测值间的误差平方和(SSE)、均方差(RMSE)和决定系数(R2)分别为0.048、0.036和0.999,表明模型具有较强的预测能力;同时,交叉验证的结果(SSE=0.295,RMSE=0.089,R2=0.995)也表明,模型具有良好的稳健性,因此,GA-SVM算法适用于对有机物正辛醇-水分配系数的QSPR建模.此外,将基于GA-SVM的QSPR模型分别与基于遗传-径向基神经网络(GA-RBFNN)和基于线性算法的模型进行了比较,结果表明,应用GA-SVM建立的QSPR模型无论从稳健性还是预测能力上都优于应用其它2种算法建立的模型,因此,GA-SVM算法比GA-RBFNN和线性算法更适合于对有机物正辛醇-水分配系数进行QSPR建模.A modified method to develop quantitative structure-property relationship (QSPR) models of organic compounds was proposed based on genetic algorithm (GA) and support vector machine (SVM) (GA-SVM). GA was used to perform the variable selection, and SVM was used to construct QSPR models. GA-SVM was applied to develop the QSPR models for n-octanol-water partition coefficients ( Kow ) of 38 typical organic compounds in food industry. 5 descriptors (molecular weights, Hansen polarity, boiling point, percent oxygen and percent hydrogen) were selected in the QSPR model. The coefficient of multiple determination (R^2), the sum of squares due to error (SSE) and the root mean squared error (RMSE) values between the measured values and predicted values of the model developed by GA-SVM are 0.999, 0.048 and 0.036, respectively, indicating good predictive capability for lgKow values of these organic compounds. Based on leave-one-out cross validation, the QSPR model constructed by GA-SVM showed good robustness (SSE = 0.295, RMSE = 0.089, R^2 = 0.995). Moreover, the models developed by GA-SVM were compared with the models constructed by genetic algorithm-radial basis function neural network (GARBFNN) and linear method. The models constructed by GA-SVM show the optimal predictive capability and robustness in the comparison, which illustrates GA-SVM is the optimal method for developing QSPR models for lgKow values of these organic compounds.

关 键 词:定量结构-性质相关(QSPR) 正辛醇-水分配系数(Kow) 遗传算法(GA) 支持向量机(SVM) 

分 类 号:X131[环境科学与工程—环境科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象