检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统仿真学报》2008年第1期40-45,共6页Journal of System Simulation
摘 要:二元收缩方程定义了由相邻尺度小波系数的联合概率密度函数,其与噪声模型联立后利用最大后验概率估计可进行图像去噪。在SAR图像斑点噪声服从瑞利分布的假设下,结合双树复数小波变换推导了基于二元收缩方程的SAR图像的简化去噪模型,然后利用局部方差估计和维纳滤波器获得噪声方差与带噪小波系数方差的估计值,并计算出合适阈值对SAR图像进行去噪。实验结果显示,去噪图像的峰值信噪比以及有效视数都较其它算法有大幅提高,且很好地保持了图像的边缘特征。Bivariate shrinkage functions (BSF) statistically denoted as joint probability density functions (PDF) and noise PDF could be united by MAP to de-noise image. The intensity of speckle was hypothesized to be distributed according to Rayleigh distribution. Then SAR image de-noising modal based on BSF and dual-tree complex wavelet transform (DT-CWT) was constructed and reduced. Local variance estimation and wiener filter were used to estimate noise variance and noisy wavelet coefficients variance, which were used to choose an appreciated threshold to de-noise SAR image. Experiment results demonstrate that PSNR and ENL values of de-noised images are extremely larger than other algorithms and edge features have been perfectly preserved.
关 键 词:二元收缩方程 双树复数小波变换 局部方差估计 SAR图像去噪
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.158.134