检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王德兴[1] 胡学钢[1] 刘晓平[1] 黄冬梅[2]
机构地区:[1]合肥工业大学计算机与信息学院,合肥230009 [2]上海水产大学信息技术学院,上海200090
出 处:《模式识别与人工智能》2007年第6期843-848,共6页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金(No.60673028);国家863计划项目(No.2006AA102239-1);安徽省自然科学基金项目(No.050420207);上海市教育委员会科研创新基金项目(No.08YZ120)
摘 要:在知识发现过程中用户感兴趣的往往是一些高层次、适当概括的简化信息,面向属性的归纳是目前主要的数据归约方法,一般是仅考虑原始数据所提供简单的统计信息.本文提出的基于量化扩展概念格的属性归纳算法,采用概念的爬升进行相应的泛化来完成多层、多属性归纳.与面向属性归纳算法比较,该算法的泛化路径不是唯一的,在量化扩展概念格的哈斯图中容易找到合适的泛化路径和阈值,得到满足用户要求合理的属性归纳结果,以提供用户所需的不同粒度的知识.In knowledge discovery in databases (KDD), users show much interest in high-level, general and reductive information. Attribute oriented induction (AOI), which generally takes the statistical information from original data into account, has been commonly used in data reduction. However, attribute-oriented algorithm based on quantitative concept lattice can finish induction with multi-level and multi-attribute by using concept ascension according to the Hasse diagram of the quantitative extended concept lattice. Compared with AOI, the generalization path of the proposed algorithm is not unique. The proper generalization paths and thresholds on the Hasse diagram of quantitative extended concept lattice could be found easily. The required reasonable results are gotten, and different granular knowledge is provided for users.
关 键 词:面向属性归纳(AOI) 概念格 概念层次 数据挖掘
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70