检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学,北京100044 [2]吉林大学,长春130025
出 处:《交通与计算机》2007年第6期28-30,33,共4页Computer and Communications
基 金:国家973计划项目资助(批准号:2006CB705500)
摘 要:介绍了目前国内外道路交通量预测的方法、特点及实际的预测效果。由于城市道路交通的复杂性,使得一些现有交通量预测方法的预测精度不高。针对这些问题,应用混沌神经网络,建立了城市道路交叉口出口交通量的浑沌神经网络预测模型,并与传统的BP神经网络预测结果对比,表明此模型具有较好的预测效果。The methods, characters, and effect of urban road traffic volumes forecast at home a ld abroad were introduced. Because of the complexity of urban traffic, the prediction precision of some existing methods is not high. In this paper, the chaotic neural network was used to set up a model of traffic volume in real intersection exit. Through the comparison with the traditional BP neural network, the model has better effect in prediction.
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3