SAD phasing by OASIS at different resolutions down to 0.30 nm and below  

SAD phasing by OASIS at different resolutions down to 0.30 nm and below

在线阅读下载全文

作  者:姚德强 李鹤 陈强 古元新 郑朝德 林政炯 范海福 渡邉信久 沙炳东 

机构地区:[1]Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,Chinese Academy of Sciences [2]National Synchrotron Radiation Laboratory, University of Science and Technology of China [3]Institute of Biophysics, Chinese Academy of Sciences [4]National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University [5]Department of Biotechnology and Biomaterial Chemistry, Nagoya University [6]Department of Cell Biology, University of Alabama at Birmingham

出  处:《Chinese Physics B》2008年第1期1-9,共9页中国物理B(英文版)

基  金:Project supported by the Innovation Project of the Chinese Academy of Sciences and the 973 Project (Grant No 2002CB713801)of the Ministry of Science and Technology of China

摘  要:Single-wavelength anomalous diffraction (SAD) phasing is increasingly important in solving de novo protein structures. Direct methods have been proved very efficient in SAD phasing. This paper aims at probing the low-resolution limit of direct-method SAD phasing. Two known proteins TT0570 and Tom70p were used as test samples. Sulfur-SAD data of the protein TT0570 were collected with conventional Cu-Kα source at 0.18 nm resolution. Its truncated subsets respectively at 0.21, 0.30, 0.35 and 0.40 nm resolutions were used in the test. TT0570 Cu-Kα sulfur-SAD data have an expected Bijvoet ratio 〈 |△F| 〉 / 〈 F 〉 ~ 0.55%. In the 0.21 nm case, a single run of OASIS-DM-ARP/wARP led automatically to a model containing 1178 of the total 1206 residues all docked into the sequence. In 0.30 and 0.35 nm cases, SAD phasing by OASIS-DM led to traceable electron density maps. In the 0.40 nm case, SAD phasing by OASIS-DM resulted in a degraded electron density map, which may be difficult to trace but still contains useful secondary-structure information. Test on real 0.33 nm selenium-SAD data of the protein Tom70p showed that even automatic model building was not successful, the combination of manual tracing and direct-method fragment extension was capable of significantly improving the electron-density map. This provides the possibility of effectively improving the manually built model before structure refinement is performed.Single-wavelength anomalous diffraction (SAD) phasing is increasingly important in solving de novo protein structures. Direct methods have been proved very efficient in SAD phasing. This paper aims at probing the low-resolution limit of direct-method SAD phasing. Two known proteins TT0570 and Tom70p were used as test samples. Sulfur-SAD data of the protein TT0570 were collected with conventional Cu-Kα source at 0.18 nm resolution. Its truncated subsets respectively at 0.21, 0.30, 0.35 and 0.40 nm resolutions were used in the test. TT0570 Cu-Kα sulfur-SAD data have an expected Bijvoet ratio 〈 |△F| 〉 / 〈 F 〉 ~ 0.55%. In the 0.21 nm case, a single run of OASIS-DM-ARP/wARP led automatically to a model containing 1178 of the total 1206 residues all docked into the sequence. In 0.30 and 0.35 nm cases, SAD phasing by OASIS-DM led to traceable electron density maps. In the 0.40 nm case, SAD phasing by OASIS-DM resulted in a degraded electron density map, which may be difficult to trace but still contains useful secondary-structure information. Test on real 0.33 nm selenium-SAD data of the protein Tom70p showed that even automatic model building was not successful, the combination of manual tracing and direct-method fragment extension was capable of significantly improving the electron-density map. This provides the possibility of effectively improving the manually built model before structure refinement is performed.

关 键 词:OASIS SAD phasing dual-space fragment extension PROTEINS 

分 类 号:Q51[生物学—生物化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象