检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学精密与特种加工教育部重点实验室 [2]电子科技大学,成都610054
出 处:《中国机械工程》2008年第1期52-57,共6页China Mechanical Engineering
基 金:国家自然科学基金资助项目(59685003);高等学校全国优秀博士学位论文作者专项基金资助项目(200232);教育部优秀青年教师资助项目(1766);太原重型机械集团有限公司资助项目(200106)
摘 要:根据协同优化算法的思想,提出了一种Multi-Agent模型,利用神经网络建立子系统优化Agent的近似响应面。子任务规划Agent进行传统的优化进程;任务调度Agent根据结果分析Agent计算的样本集近似满意度自主选择不同的执行路径;近似响应面Agent通过使用更新准则,逐步获取满足子系统级约束和目标的精确的响应面。当子系统获取指标变量后,通过子系统优化Agent内部的响应面快速获取优化解向量,并将该向量返回到全局黑板数据结构中,系统级优化Agent可以利用该结构,协调各个子Agent不一致的信息,从而有效地提高了复杂机械产品协同优化中的效率和精度。Based on the principles of collaborative optimization, this paper presented an intelligent Multi--Agent model, which employed ANN to build response surface of subspace agent, and used subtask--programming agent to perform the traditional optimization processing. By the approximate satisfactory degree calculated by result analysis agent, task assignment agent was able to select different executive routes autonomously. The response surface agent acquired gradually the accurate response surface of subspace objects and constrainted in accordance with updating criterion. When subspace agent received the target vector from system level, it can use the response surface to fastly produce the optimal solution and sent it to global blackboard structure, by which system level agent coordinated the inconsistent information of different subspace agents. Finally, an engineering example was applied to prove the proposed method can improve the efficiency and accuracy of collaborative optimization for complex mechanical products.
关 键 词:MULTI-AGENT 人工神经网络 响应面 协同优化
分 类 号:TH122[机械工程—机械设计及理论] TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117