检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学控制科学与工程学院,河北保定071003
出 处:《华北电力大学学报(自然科学版)》2008年第1期14-17,共4页Journal of North China Electric Power University:Natural Science Edition
摘 要:针对锅炉燃烧控制系统送风调节系统存在的弊端,遵照火电厂锅炉燃烧既要提高效率又要降低污染物排放的要求,对神经网络和遗传算法在火电厂锅炉燃烧优化中的应用进行了研究。首先借助燃烧特性试验数据,建立了火电厂锅炉燃烧特性的神经网络模型,然后应用遗传算法寻找送风调节系统最佳氧量设定值,进而调节送风量,实现锅炉燃烧的整体优化。仿真结果表明:应用该方法指导锅炉燃烧,不仅能使锅炉节能,还能降低排放的烟气中氮氧化物的含量,减少对环境的污染。To overcome the defects in forced draft control system, and to meet the requirement of high efficiency and low emission, a boiler combustion optimization method combining neural network and genetic algorithm was researched. First, a neural network model of boiler combustion characteristic was constructed based on the data of com- bustion experiment. Then genetic algorithm was used to seek the best setting point of Oxygen content in forced draft control system for the further control of supply air rate. The simulation shows that this combined method can not only make boiler run with the least energy but also reduce Nitrogen Oxide emission and diminish pollution to environment.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15